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Abstract

We present a novel way of accounting for similarity judgments.
Our approach posits that similarity ratings stem from three
main sources: familiarity, priming, and inherent perceptual
similarity. We present a process model of our approach in the
cognitive architecture ACT-R, and match our model’s predic-
tions to data collected from a human subject experiment which
involved simple perceptual stimuli. Familiarity accounts for
rising ratings over time; priming accounts for asymmetric ef-
fects that arise when the stimuli are shown with different fre-
quencies. Pure perceptual similarity also predicts trends in the
results. Overall, our model matched the data with R2 of 0.99.

Introduction
Similarity is a critical and pervasive part of human cogni-
tion (Medin, Goldstone, & Gentner, 1993). Similarity mea-
sures are integral to object categorization and classification
(Nosofsky, 1992). Similarity is also pervasive in problem
solving (Novick, 1990), decision-making (Medin, Goldstone,
& Markman, 1995), and memory (Roediger, 1990). As with
many aspects of human cognition, however, the mechanisms
that determine similarity are not yet fully understood. Var-
ious theories abound, with none yet able to capture enough
different types of situations to be called the winner (Rorissa,
2005).

One interesting result in this field is asymmetries that have
been shown to arise when making similarity judgments, even
of very simple perceptual stimuli (Tversky, 1977; Rosch,
1975). Rosch (1975) argued that such similarity is based
on mapping stimuli onto one another and, intuitively, non-
prototypical stimuli map more easily onto prototypical stim-
uli than vice versa. Tversky (1977) argued that is due to
weighted feature matching, where the salience of features in
the current context determines their weight; others agree with
this thought in general (Medin et al., 1993; Glucksberg &
Keysar, 1990).

These two explanations, however, assume that either there
is a clear prototype inherently present in the experiment (such
as the more perceptually complex stimulus), or that stim-
uli have various features which have a clear inherent or-
der of cognitive preference and saliency (such as symmetry).
They do not, however, provide any concrete explanations for
why complexity or symmetry may lead to prototypicality or
saliency.

Polk, Behensky, Gonzalez, and Smith (2002) shed light
on the situation by presenting an experiment that avoids the
question entirely by using perceptual stimuli where the only
feature was color (so there are no features to comparatively
weigh), and where the color hues are fairly similar (so there is

no clear prototype). The experiment showed a striking asym-
metry in similarity judgments between the different colors
when they were presented with different frequencies during
an irrelevant training task: colors which had been trained on
less often were considered more similar to colors which had
been trained on more often than the other way around. To
account for these low-level results, Polk et al. (2002) imple-
mented a neural network which simulated the asymmetry by
measuring the ease with which the network switches between
different activation patterns; those that are more stable (e.g.,
high-frequency patterns) were easier to assimilate to.

In our approach, we match the human subject data from
Polk et al. (2002) while attempting to address three additional
points. First, there was a second significant effect, that the
ratings in general increased over time, that the above models
do not address. Second, we wanted our approach to provide
explicit cognitive processes for similarity ratings. Third, we
believe that inherent perceptual similarity also plays a part in
these types of similarity judgments (e.g., purple is inherently
more similar to blue than to orange) (Smith & Heise, 1992).

To this end, we begin our approach with the cognitive ar-
chitecture ACT-R (Adaptive Characterization of Thought –
Rational) (Anderson, 2007). Using ACT-R, we account for
similarity judgments by considering three values provided a
priori by the architecture. The first, familiarity, is represented
as a base-level activation value of a concept, which represents
its frequency and recency of use. The second, priming, is
based on spreading activation, which disperses activation be-
tween different, associated concepts in declarative memory
(Anderson, 1983; Harrison & Trafton, 2010). In addition, we
utilize an extension to ACT-R which provides it with a cal-
culation for measuring color similarity (Breslow, Ratwani, &
Trafton, 2009; Breslow, Trafton, & Ratwani, 2009).

Our model starts without any pre-existing declarative
knowledge or network structures; all knowledge is created
during the experiment. Over time, our cognitive model builds
a network of concepts (e.g., color blocks) by learning associ-
ations between them in the form of subsymbolic connections
between their representations in declarative knowledge. Dur-
ing each similarity judgment, the model combines its mea-
sure of perceptual similarity with base-level and spreading
activation to determine its response. On the first trial of an
experiment, there is no spreading activation since there is no
declarative knowledge and so the judgment is based purely
on base-level activation and perceptual similarity; however,
over time the model builds up declarative memories that may
contribute to spreading activation in later trials. This explains
the two main effects found in Polk et al.’s experiment. Dur-
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ing judgments made on stimuli which have been previously
viewed with different frequencies, less activation is spread
from high- to low-frequency color patches than from low-
to high-frequency color patches because that is the direction
which priming favors. In addition, base-level activation is
higher at the end of the experiment than in the beginning due
to increased familiarity with the colors, leading to increased
ratings over time.

The primary contribution of this work is a general account
for similarity which provides implemented, explicit, process-
level mechanisms for calculating similarity values. Other
work has used activation for similarity in more abstract terms:
the neural network written by Polk et al. (2002) relies on ac-
tivation patterns; and other accounts also exist (Kozima &
Furugori, 1993; Ulhaque & Bahn, 1992). Tversky (1977)’s
discussion of salience, and Rosch (1975)’s on prototypical-
ity can also be seen as broadly touching upon activation in
similarity. Our work solidifies these accounts in a cognitive
setting by positing that the abstract notion of salience (or pro-
totypicality) translates to familiarity and priming in a cogni-
tive model. In addition, our work is distinguished because we
also account for inherent perceptual similarity. We show that
our model is an excellent fit for empirical human subject data
on similarity judgments on simple perceptual stimuli.

Experiment
There were three phases to the experiment: a pre-test phase,
a training phase, and a post-test phase (Polk et al., 2002).
In the pre-test phase, participants viewed two patches of dif-
ferent colors that were the same size and were asked to rate
their similarity on a scale of 0 to 9 (0 as highly dissimilar, 9
as highly similar). Five different hues of green and five dif-
ferent hues of blue were used, designated as blue1...blue5,
and green1...green5. Greens and blues were never compared
to each other; only hues of the same color were shown con-
currently. During a trial, the stimuli were presented as part
of a text question to emphasize the directionality of the judg-
ment: “How similar is (color patch 1) to (color patch 2)?” The
color blocks were labeled “Blue1” and “Blue2,” or “Green1”
and “Green2” as appropriate, with the label displaying below
the color patches; note that this is irrespective of whether the
color itself was blue1, blue5, etc. The blocks were 140X140
pixels. Once a user entered a rating, the screen was cleared
for 500ms before the next comparison appeared. Each pair of
colors was presented twice in each direction for a total of four
times each. The order in which the pairs were presented was
randomized, except that the same hue was not present in con-
secutive trials. The sentence was centered both horizontally
and vertically.

In the training phase, participants saw two patches of the
same color but different sizes (125X125, 131X131, 138X138
and 144X144 pixels, appearing with equal probability) and
were asked to specify which was larger. The key part of the
experiment is that, during this phase, two of the five greens
and two of the five blues were presented ten times more fre-

quently as others, 110 times instead of 11 (half the partici-
pants saw blue1, blue2, green1 and green2 with a higher fre-
quency, called the “1-2 group”, the other saw blue4, blue5,
green4 and green5 presented more often, the “4-5 group”).

The third phase was a second testing phase that was an ex-
act repeat of the first phase. Forty-five participants took part
in the experiment, with ten being excluded due to inaccuracy
on their size judgments or self-reporting of a lack of concen-
tration. For more details, see (Polk et al., 2002).

The experiment produced two interesting results. First,
there was no significant difference between “forward” (less
frequent color on the left, more frequent color on the right)
and “backward” (more frequent color on the left, less frequent
on the right) comparisons in the pre-test phase; however,
these comparisons showed a striking asymmetry effect during
the post-test phase. Specifically, forward comparisons were
ranked as significantly more similar than backward compar-
isons during this testing phase. A second find was that simi-
larity ratings were significantly higher in the post-test than in
the pre-test. No other effects were reported as significant by
the authors.

ACT-R
At the core of our approach is the cognitive architecture ACT-
R (Anderson, 2007). At a high level, ACT-R is a hybrid
symbolic/subsymbolic production-based system. In other
words, given declarative knowledge (fact-based memories, or
“chunks”) and procedural knowledge (rule-based memories,
or “productions”), as well as input from the world (e.g., vi-
sual), it decides what productions to fire next; these produc-
tions can either change its internal state (e.g., by creating new
knowledge) or its physical one (e.g., by pressing a key on a
keyboard). Knowledge has both a symbolic component, such
as who was where at what time, and subsymbolic one, such
as how relevant a fact is to the current situation.

ACT-R is made of up several major components. First, it
has several limited-capacity buffers. Each buffer is backed by
one (or more) theoretically motivated modules (e.g., declar-
ative, visual, aural, etc.); in addition, there is the procedural
module, which does not have an associated buffer. Each mod-
ule represents a specific cognitive faculty and has been shown
to have anatomical correspondences in the brain (Anderson,
Albert, & Fincham, 2005; Anderson, 2007).

Chunks consist of a set of slots, whose values determine the
concept that the chunk represents. At any point in time, there
may be at most one chunk in any individual buffer; a module’s
job is to decide when to put chunks into its corresponding
buffer. Then, a central pattern matcher uses the contents of
the buffers, if any, to match specific productions which, when
fired, can modify the current buffer contents.

The relevant modules of ACT-R to this paper are the declar-
ative, intentional, imaginal, visual and motor modules, which
are associated with the retrieval, goal, imaginal, visual and
visual-location, and motor buffers, respectively. The declara-
tive module manages the creation and storage of the model’s
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factual memory; in addition, when requested, chunks can be
accessed via the retrieval buffer. It has been shown to be
an astonishingly good predictor of human declarative mem-
ory (Anderson, Bothell, Lebiere, & Matessa, 1998; Ander-
son, 1983; Schneider & Anderson, 2011). The intentional
and imaginal modules provide support for task-oriented cog-
nition. The goal buffer (associated with the intentional mod-
ule) typically contains chunks that identify and placekeep the
model’s current goal; the imaginal module usually contains
intermediate problem state representations. Finally, the visual
and motor modules interface ACT-R with the world, allowing
ACT-R to see objects on a computer screen (including their
height and color) and press buttons on a keyboard.

To quantify the perceptual difference between the color
blocks, we consider a measure of color similarity proposed
by Breslow, Ratwani, and Trafton (2009). They introduced
a component to ACT-R which supports high-level color pro-
cessing that can detect both color similarity and brightness
difference between colors. It is based on the CIEDE2000 al-
gorithm (CIE, 2001), and has been shown to match well with
human subject data. Given two color values, this color sim-
ilarity component returns a numeric measure of how similar
they are perceived to be by the cognitive model.

Subsymbolic Information
A key aspect of declarative memory in ACT-R is priming, or
the subsymbolic activation of chunks. Activation consists of
three primary components: base-level activation, spreading
activation, and noise. Base-level activation is a measure of
familiarity that is learned over time and is a function of the
frequency and recency of references to the chunk, where a
single reference is defined as (for purposes of this paper) be-
ing added to and then removed from a buffer. It is designed
to represent the activation of a chunk over longer periods of
time. Spreading activation, on the other hand, is temporary
and based on the current context, allowing chunks that are
the focus of attention to prime related memories for short pe-
riods of time. Noise is a random component that models the
noise of the human brain; since its presence would not affect
our results, we ignore noise in the rest of this paper.

Spreading activation is spread along subsymbolic associa-
tive links between chunks. Links are created from a chunk
j to a chunk i when: (1) chunk i contains chunk j, or has
chunk j as one of its slot values; or (2) chunks i and j are
both matched by the same production (called co-occurrence)
(Anderson, 1983; Harrison & Trafton, 2010). There are other
ways of creating links, as well, but we do not utilize them
in this model and so forgo their discussion. Once estab-
lished, links have an associated strength value which affects
how much activation is passed along the link from chunk j
to chunk i. Link strengths, intuitively, reflect the probability
that chunk i will be needed when chunk j is being referred
to by a production. They are a function of how many times
chunks j and i have been referred to by a production at the
same time, vs. how many times chunk j was referred to by
a production without chunk i. Note, then, that while links

stemming from co-occurrence are always present in both di-
rections (i.e., chunk j activates chunk i and vice versa), the
links may be of different strengths if the chunks have not al-
ways been referred to by productions at the same time, or with
the same frequency.

Spreading activation sources from the goal buffer. When a
chunk i is in the goal buffer, the buffer’s source activation is
divided equally among all chunks j which have an outgoing
link to chunk i (such as a slot value of chunk i, or a chunk that
has co-occurred with chunk i in the past). The j chunks then
use their source activation as the basis of spreading activation
along all of their outgoing links. Note that in ACT-R, this is a
one-step process; the chunks that receive spreading activation
from the j chunks do not, in turn, spread activation along their
outgoing links (Anderson, 1983).

Model and Fit
The model itself is fairly simple. It starts out with no declar-
ative knowledge, but with the productions necessary to com-
plete the experimental task. For each trial during the two test-
ing phases, the model starts by looking at the color block on
the left. Once the model has the block chunk in its visual
buffer, the model requests a retrieval of the chunk of the color
associated with it, and looks for the object on the right. Once
the left color chunk has been retrieved, the model places it in
the imaginal buffer and removes it from the retrieval buffer.
Then, when it sees the object on the right, it can retrieve the
color of the second color block. When that chunk has been
retrieved, the model has each of the color chunks in a buffer
and it can then proceed to making the similarity judgment.

The model draws similarity from three sources: how per-
ceptually similar the two colors are to each other, how fa-
miliar the right color is, and to what degree the right color
is primed. Recall that mathematically, perceptual similarity
is calculated from the RGB values of two colors; familiar-
ity is represented as base-level activation, which numerically
represents the recency and frequency of use of a color; and,
finally, priming is measured via the amount of spreading ac-
tivation that a color receives in the current context. There-
fore, the model calculates the perceptual similarity of the two
colors, and looks at the total activation (both base-level and
spreading) that the right color has at the time of the judge-
ment. Note that while the right color receives spreading ac-
tivation from sources other than the left color, the amount
of “other” spreading activation is constant across trials, mak-
ing the spreading activation from the left color the cause of
asymmetry effects. After the model has these two numbers
available, it presses the button corresponding to its rating, the
trial is finished and the model waits for the next one to begin.

During a training trial, the model first looks at the color
block on the left. It then stores the block’s color as part of the
goal representation in case it is later needed (such as if the
subsequent visual search fails), and looks for another block
of the same color. Once it sees the second color block, it
retrieves the first one. Then, while thinking about the first
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block and looking at the second one, it compares their heights
and responds accordingly.

Subsymbolically, during each testing trial, co-occurrence
links are created (or strengthened) between: each of the block
chunks and the current goal chunk; each of the color chunks
and the current goal chunk; and the two color chunks. Block
chunks also have an incoming, containment link from their
associated color chunk. During a training trial, co-occurrence
links are created (or strengthened) between: the two block
chunks; and each of the block chunks and the current goal
chunk. The goal chunk and the block chunks also each have
an incoming link from the color chunk because they contain
it as a slot value. Figure 1 shows this in diagrammatic form,
showing co-occurrence links as bi-directional for simplicity.

le#$block)

right$block)

blue5&

blue1&

judge$similarity)

co$occurrence)link)

containment)link)

(a) Subsymbolic connections between chunks
after 1 testing trial.

le#$block)

right$block)

blue5&

blue1&

judge$similarity)

le#$block$1)

right$block$1)

judge$similarity$1)

blue2&

le#$block$2)

right$block$2)

compare$size$2)

(b) Symbolic connections between chunks after 2 test-
ing trials and 1 training trial.

Figure 1: Subsymbolic connections between chunks at vari-
ous phases of model execution. Here, the model performed
two pre-test trials (with colors blue5/blue1, and blue1/blue2,
respectively), and one training trial (where blue1 is the color).
In order to maintain clarity, this diagram is slightly simplified
from the model’s actual subsymbolic network (e.g., it does
not contain containment links for the visual location slots of
the left and right blocks, which have no bearing in the spread-
ing activation process here).

In terms of parameters, the associative learning rate, which
affects the rate at which links are strengthened, was set to
6.5, which represents a fairly brisk rate of learning. There is
no standard value for this parameter. The base level learning
decay parameter was set to 0.4 instead of its default of 0.5.
All other parameters were set to their default values.

Model Predictions
First, the model predicts that later comparisons will, overall,
be more similar than earlier comparisons. Before the exper-

iment begins, the colors are not familiar to the model, and
so do not have very high base-level activations. During the
pre-test, those values increase as the color chunks are refer-
enced many times. Throughout the training phase the chunks’
base-level activations decay, since the color chunks are not
referenced in those productions. Base-level activation values
then increase again during the post-test, leading to higher fa-
miliarity with the colors in the post-test than in the pre-test.
Since all colors are shown equally during the pre-test and
post-test phases, base-level activation does not predict any
sort of asymmetry effect. Additionally, within the pre-test
and post-test conditions, our model predicts that there will be
ordering effects, with later stimuli being rated as more simi-
lar than earlier stimuli; these effects, however, should average
out given randomization of stimuli across participants.

As we have mentioned before, the different strengths of the
subsymbolic links between two colors can cause asymmetries
to arise in the degree to which they prime each other. Con-
sider, on an intuitive level, Figure 1(b). Now, imagine that a
model with this subsymbolic structure has the goal to judge
how similar blue5 and blue1 are. First, both color chunks
receive equal source activation from the goal chunk due to
their equivalent co-occurrence links with it. They then pro-
vide each other with spreading activation according to the ap-
propriate link strength. Here, as its greater number of links
implies, blue1 has been needed more times than blue5; this
means that the link blue1→blue5 is weaker than the link
blue5→blue1. Therefore, blue1 will receive more spreading
activation than blue5, leading to an asymmetry in their simi-
larity rankings.

As a result of this asymmetry, priming in the model pre-
dicts different effects for the pre- and post- tests. For the pre-
test, the model predicts differences in similarity of forward
and backward comparisons based solely on ordering effects
of the stimuli. Given enough participants, these ordering ef-
fects average out over time to result in equal pre-test forward
and backward comparisons. For the post-test, the model pre-
dicts that less frequently shown colors will spread more acti-
vation to more frequently shown colors than vice versa; i.e.,
it predicts that colors in forward comparisons will be ranked
as more similar than those in backward comparisons.

Finally, our model predicts that the green ratings will be
higher overall than the blue ratings, as well as that the 4-5
group’s ratings will be higher overall than the 1-2 group’s
ratings. This is because of the specific hues chosen and is a
purely perceptual point. The color similarity values do not
differ depending on the direction of the comparison, or on
whether the test is a pre- or post-test.

Model Fit
In addition to the experimental results published in the orig-
inal article (Polk et al., 2002), we also examined more de-
tailed aggregate data provided to us by the authors. The data
included the averages, for each subject, of ratings for trials
of each condition (e.g., the average rating for each subject of
all pre-test forward trials of blue hue, etc.). Since our model
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is sensitive to the order in which stimuli are presented, we
would have preferred to replicate the experiment exactly, in-
cluding presenting the stimuli in the same order as in the orig-
inal experiment. Because this information was not available,
we instead used our model to simulate data from 1000 par-
ticipants, in order to allow effects to better converge on the
model’s true predictions.

Our measurement of the model fit is done in two steps.
First, the model needs to transform the similarity measures
into an overall similarity rating. We do this post-hoc by fitting
a linear regression model to the data, with the perceptual sim-
ilarity value and total activation as the explanatory variables
and the human participants’ ratings as the dependent variable.
We use total activation to maintain cognitive fidelity; it is
unclear whether human minds can separately consider base-
level and spreading activation values during cognitive tasks.
Individual data points were the different conditions (e.g., the
average rating across all participants in the 1-2 group of pre-
test forward trials of blue hue, etc.). The model only con-
siders the main effects of the two variables; this is because
our goal is to show that the two similarity measures are the
primary components of similarity ratings in this task, not to
make any claims about how they are combined by the brain
into a numerical rating. We take this approach because there
are very few theories or accepted practices of how to convert
continuous, numerical data to a rating scale.

Second, with this step completed, we compared the
model’s predicted ratings with the human participants’ rat-
ings. The model does indeed produce the two main significant
effects of the human subject data, showing both a directional
asymmetry in post-test comparisons as well as an increase
in similarity ratings overall in the post-test. Figure 2 shows
graphs of the numerical results for both the model and the hu-
man subject data. Note that error bars for the human data are
not available. R2 (multiple) for these graphs across all data
was 0.99; for blue only, 0.96; for green only, 0.96; for the
1-2 group (which saw blue1, blue2, green1 and green2 more
frequently), 0.98, and for the 4-5 group (which saw blue4,
blue5, green4 and green5 more frequently), 0.91.

For differences in color, the model’s results, where blue
pre-test ratings are slightly lower than green pre-test ratings,
do not match well with the data’s trends. The model does
have overall higher ratings for the 4-5 group pre-test than the
1-2 group pre-test, but not to the extent of the data. The ef-
fects do not present a difficulty for the model, however, in
large part because the experiment did not find these effects to
be significant, presumably due to its small sample size of 35.

In terms of their individual contribution to explaining the
data, color alone yields an R2 of 0.09; color and base-level
activation produce an R2 of 0.79; and color, base-level activa-
tion and spreading activation an R2 of 0.99. This is intuitive
and consistent with our account of the data: base-level acti-
vation is responsible for the larger main effect between the
pre- and post-tests, while spreading activation correlates to
the more modest interaction effect of forward versus back-
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Figure 2: Main Results.

ward comparisons.

Discussion
In this paper, we have introduced an account for similarity rat-
ings that combines familiarity, priming, and perceptual simi-
larity into a single judgment. We match our account to human
subject data involving simple perceptual stimuli from Polk et
al. (2002). Our approach explains that ratings rise over time
because participants become more familiar with the stimuli,
in general. Priming explains the asymmetry effect found be-
cause, inherently, low frequency concepts prime high fre-
quency concepts more than the opposite. Finally, although the
experiment did not reveal any significant differences between
colors, our approach predicts that different pairs of colors will
be slightly more similar than others due to pure perceptual
similarity. Using these mechanisms, we show an excellent
match to the human data.

Our approach is significant for at least two main reasons.
First, we provide explicit, process-level mechanisms for de-
termining similarity that explain, in a sense, how others’ work
(Rosch, 1975; Tversky, 1977) is realized by the human mind.
Second, and perhaps more importantly, the mechanisms we
offer as the basis of similarity have been shown to be pre-
existing mechanisms in cognition that are also used for other
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cognitive processes such as retrieval of memories, catego-
rization, and problem solving (Anderson, 2007; Altmann &
Trafton, 2002). This strengthens our approach since it also
explains the pervasiveness of similarity in human cognition
that has been found by a plethora of other research.

Finally, it is worth noting that familiarity, priming and per-
ceptual similarity are not intended to be characterized as the
ultimate, and only, way to determine similarity ratings. While
they work well with simple perceptual stimuli, and we expect
that their success will also extend to more complicated per-
ceptual stimuli and simple concepts, we recognize that more
complicated mechanisms are likely at work in, for example,
the similarity of complex perceptual scenes, or the similarity
of two short stories. We believe that such judgments likely in-
volve some sort of structure alignment process as others have
hypothesized for similarity judgments of higher-level stimuli
or concepts (Markman, 1999; Goldstone, 1994). Instead, this
paper is intended to introduce familiarity, priming and per-
ceptual similarity as the foundation for similarity which other
mechanisms can augment.
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